mirror of
https://github.com/jdejaegh/cartopy-tor-relays.git
synced 2025-06-26 13:15:38 +02:00
Add code
This commit is contained in:
commit
3a68a988c1
7 changed files with 363 additions and 0 deletions
160
.gitignore
vendored
Normal file
160
.gitignore
vendored
Normal file
|
@ -0,0 +1,160 @@
|
|||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
share/python-wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.nox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
*.py,cover
|
||||
.hypothesis/
|
||||
.pytest_cache/
|
||||
cover/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
db.sqlite3
|
||||
db.sqlite3-journal
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
.pybuilder/
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# IPython
|
||||
profile_default/
|
||||
ipython_config.py
|
||||
|
||||
# pyenv
|
||||
# For a library or package, you might want to ignore these files since the code is
|
||||
# intended to run in multiple environments; otherwise, check them in:
|
||||
# .python-version
|
||||
|
||||
# pipenv
|
||||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||
# install all needed dependencies.
|
||||
#Pipfile.lock
|
||||
|
||||
# poetry
|
||||
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||
# commonly ignored for libraries.
|
||||
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||
#poetry.lock
|
||||
|
||||
# pdm
|
||||
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
||||
#pdm.lock
|
||||
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
||||
# in version control.
|
||||
# https://pdm.fming.dev/#use-with-ide
|
||||
.pdm.toml
|
||||
|
||||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
||||
__pypackages__/
|
||||
|
||||
# Celery stuff
|
||||
celerybeat-schedule
|
||||
celerybeat.pid
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# Environments
|
||||
.env
|
||||
.venv
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
||||
.dmypy.json
|
||||
dmypy.json
|
||||
|
||||
# Pyre type checker
|
||||
.pyre/
|
||||
|
||||
# pytype static type analyzer
|
||||
.pytype/
|
||||
|
||||
# Cython debug symbols
|
||||
cython_debug/
|
||||
|
||||
# PyCharm
|
||||
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
||||
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
#.idea/
|
21
LICENSE
Normal file
21
LICENSE
Normal file
|
@ -0,0 +1,21 @@
|
|||
MIT License
|
||||
|
||||
Copyright (c) 2024 Jules Dejaeghere
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
54
README.md
Normal file
54
README.md
Normal file
|
@ -0,0 +1,54 @@
|
|||
# Map Tor relays using Cartopy
|
||||
Create a map showing the geographic location of the Tor relays
|
||||
|
||||
## Setup
|
||||
|
||||
1. Create a venv: `python -m venv venv && source venv/bin/activate`
|
||||
2. Install requirements: `pip install -r requirements.txt`
|
||||
|
||||
## Get the data to create the map
|
||||
|
||||
You'll need two files:
|
||||
1. The Tor consensus you want to use. Download one at: https://metrics.torproject.org/collector/recent/relay-descriptors/consensuses/
|
||||
2. The _GeoLite2 City_ file from MaxMind (not the CSV format). See their website to create an account and get the file: https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
|
||||
|
||||
## Run the program
|
||||
|
||||
The program takes two arguments: the filename of the consensus and the filename of the GeoLite2 mmdb file.
|
||||
|
||||
```shell
|
||||
python map.py 2024-03-27-13-00-00-consensus GeoLite2-City.mmdb
|
||||
```
|
||||
|
||||
A third (optional) parameter can control the density of the clusters. The default is 1.5 and generally gives nice maps.
|
||||
The higher the value, the bigger the clusters.
|
||||
|
||||
```shell
|
||||
python map.py 2024-03-27-13-00-00-consensus GeoLite2-City.mmdb 1.5
|
||||
```
|
||||
|
||||
## Using OSM data (optional)
|
||||
|
||||
It is possible to use data from OpenStreetMap as background (instead of the default cartopy image).
|
||||
|
||||
Check the code and the `TODO` comment to enable that. If you use OSM data and Mapbox as suggested in the comment,
|
||||
please use attribute it properly.
|
||||
|
||||
The following attribution line is generally enough:
|
||||
|
||||
> © <a href='https://www.mapbox.com/about/maps/'>Mapbox</a> © <a href='http://www.openstreetmap.org/copyright'>OpenStreetMap</a> <strong><a href='https://www.mapbox.com/map-feedback/' target='_blank'>Improve this map</a></strong>
|
||||
|
||||
## Attribution
|
||||
|
||||
This attribution or a similar should be included when you use this script with MaxMind data.
|
||||
|
||||
> This product includes GeoLite2 Data created by MaxMind, available from https://www.maxmind.com
|
||||
|
||||
## Examples of maps
|
||||
|
||||
### Default cartopy background
|
||||
|
||||

|
||||
|
||||
### With a custom style from MapBox
|
||||

|
BIN
img/map.png
Normal file
BIN
img/map.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 950 KiB |
BIN
img/map_osm.png
Normal file
BIN
img/map_osm.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 2.9 MiB |
123
map.py
Normal file
123
map.py
Normal file
|
@ -0,0 +1,123 @@
|
|||
import matplotlib.pyplot as plt
|
||||
import matplotlib.colors
|
||||
import geoip2.database
|
||||
from sklearn.cluster import DBSCAN
|
||||
import matplotlib.gridspec as gridspec
|
||||
from cartopy.io.img_tiles import *
|
||||
from math import log
|
||||
import fire
|
||||
|
||||
|
||||
def cluster_coordinates(coordinates, eps=1.5, min_samples=1):
|
||||
"""
|
||||
Use DBSCAN to cluster points and have a readable map
|
||||
:param coordinates: list of points (lat, lon)
|
||||
:param eps: control the density of the cluster
|
||||
:param min_samples: minimum number of samples in a cluster
|
||||
"""
|
||||
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
|
||||
dbscan.fit(coordinates)
|
||||
labels = dbscan.labels_
|
||||
cluster_centers = []
|
||||
cluster_counts = []
|
||||
unique_labels = set(labels)
|
||||
for label in unique_labels:
|
||||
if label == -1:
|
||||
continue
|
||||
cluster_mask = (labels == label)
|
||||
cluster_points = coordinates[cluster_mask]
|
||||
cluster_centers.append(np.mean(cluster_points, axis=0))
|
||||
cluster_counts.append(np.sum(cluster_mask))
|
||||
|
||||
cluster_points = coordinates[(labels == -1)]
|
||||
cluster_centers += list(cluster_points)
|
||||
cluster_counts += [1] * len(cluster_points)
|
||||
r = list(zip(cluster_centers, cluster_counts))
|
||||
return r, max(cluster_counts), min(cluster_counts)
|
||||
|
||||
|
||||
def geo_ip(ip, reader):
|
||||
"""
|
||||
Geocode IP address using the given reader
|
||||
:param ip: IP address
|
||||
:param reader: a geoip2.database.Reader
|
||||
:return: [lon, lat] location
|
||||
"""
|
||||
response = reader.city(ip)
|
||||
return [response.location.longitude, response.location.latitude]
|
||||
|
||||
|
||||
def get_ip_from_consensus(filename):
|
||||
"""
|
||||
Get the IP addresses of the relays present in the consensus at filename
|
||||
:param filename: filename of the consensus
|
||||
:return: list of IP of the relays in the consensus
|
||||
"""
|
||||
result = []
|
||||
with open(filename, 'r') as file:
|
||||
for line in file:
|
||||
if line.startswith("r "):
|
||||
fields = line.split()
|
||||
if len(fields) >= 7:
|
||||
result.append(fields[6])
|
||||
return result
|
||||
|
||||
|
||||
def main(consensus_file, geoip_data_file, eps=1.5):
|
||||
"""
|
||||
Create a map based on the consensus_file and geoip_data_file
|
||||
:param consensus_file: filename of a Tor consensus, see https://metrics.torproject.org/collector/recent/relay-descriptors/consensuses/
|
||||
:param geoip_data_file: MaxMind mmdb filename, see https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
|
||||
:param eps: control the density of the cluster on the map
|
||||
"""
|
||||
print('Reading consensus file')
|
||||
ips = get_ip_from_consensus(consensus_file)
|
||||
print(f'Found {len(ips)} relays')
|
||||
points = list()
|
||||
print('Geocoding IP addresses')
|
||||
reader = geoip2.database.Reader(geoip_data_file)
|
||||
for ip in ips:
|
||||
points.append(geo_ip(ip, reader))
|
||||
points = np.array(points)
|
||||
points, vmax, vmin = cluster_coordinates(points, eps=eps)
|
||||
|
||||
fig = plt.figure(figsize=(10, 5))
|
||||
gs = gridspec.GridSpec(2, 1, height_ratios=[1, 0.05], figure=fig)
|
||||
ax = fig.add_subplot(gs[0], projection=ccrs.PlateCarree())
|
||||
|
||||
ax.stock_img()
|
||||
ax.coastlines()
|
||||
|
||||
# TODO if you want to use OSM data with Mapbox, create an account and a custom style on Mapbox.
|
||||
# Then, fill the credentials below, comment the ax.stock_img() and ax.coastlines() lines and
|
||||
# uncomment the lines below
|
||||
# see https://docs.mapbox.com/help/tutorials/create-a-custom-style/
|
||||
# osm_tiles = MapboxStyleTiles(
|
||||
# access_token='',
|
||||
# map_id='',
|
||||
# username='',
|
||||
# cache=False)
|
||||
# ax.add_image(osm_tiles, 4)
|
||||
|
||||
cmap = plt.cm.hot
|
||||
norm = matplotlib.colors.LogNorm(vmin=vmin, vmax=vmax)
|
||||
for pos, count in points:
|
||||
ax.plot(pos[0], pos[1], 'o', markersize=max(4 * log(count, 10), 2), transform=ccrs.PlateCarree(),
|
||||
color=cmap(norm(count)))
|
||||
|
||||
ax.set_global()
|
||||
plt.box(False)
|
||||
ax.set_extent([-170, 180, -60, 85], crs=ccrs.PlateCarree())
|
||||
cb_ax = fig.add_subplot(gs[1])
|
||||
|
||||
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
|
||||
cbar = plt.colorbar(sm, cax=cb_ax, orientation='horizontal')
|
||||
cbar.set_label('Number of relays')
|
||||
|
||||
plt.tight_layout()
|
||||
print('Saving map as map.png')
|
||||
plt.savefig('map.png', dpi=300)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
fire.Fire(main)
|
5
requirements.txt
Normal file
5
requirements.txt
Normal file
|
@ -0,0 +1,5 @@
|
|||
matplotlib
|
||||
geoip2
|
||||
scikit-learn
|
||||
cartopy
|
||||
fire
|
Loading…
Add table
Reference in a new issue