cartopy-tor-relays/map.py
2024-03-27 14:59:19 +01:00

123 lines
4.1 KiB
Python

import matplotlib.pyplot as plt
import matplotlib.colors
import geoip2.database
from sklearn.cluster import DBSCAN
import matplotlib.gridspec as gridspec
from cartopy.io.img_tiles import *
from math import log
import fire
def cluster_coordinates(coordinates, eps=1.5, min_samples=1):
"""
Use DBSCAN to cluster points and have a readable map
:param coordinates: list of points (lat, lon)
:param eps: control the density of the cluster
:param min_samples: minimum number of samples in a cluster
"""
dbscan = DBSCAN(eps=eps, min_samples=min_samples)
dbscan.fit(coordinates)
labels = dbscan.labels_
cluster_centers = []
cluster_counts = []
unique_labels = set(labels)
for label in unique_labels:
if label == -1:
continue
cluster_mask = (labels == label)
cluster_points = coordinates[cluster_mask]
cluster_centers.append(np.mean(cluster_points, axis=0))
cluster_counts.append(np.sum(cluster_mask))
cluster_points = coordinates[(labels == -1)]
cluster_centers += list(cluster_points)
cluster_counts += [1] * len(cluster_points)
r = list(zip(cluster_centers, cluster_counts))
return r, max(cluster_counts), min(cluster_counts)
def geo_ip(ip, reader):
"""
Geocode IP address using the given reader
:param ip: IP address
:param reader: a geoip2.database.Reader
:return: [lon, lat] location
"""
response = reader.city(ip)
return [response.location.longitude, response.location.latitude]
def get_ip_from_consensus(filename):
"""
Get the IP addresses of the relays present in the consensus at filename
:param filename: filename of the consensus
:return: list of IP of the relays in the consensus
"""
result = []
with open(filename, 'r') as file:
for line in file:
if line.startswith("r "):
fields = line.split()
if len(fields) >= 7:
result.append(fields[6])
return result
def main(consensus_file, geoip_data_file, eps=1.5):
"""
Create a map based on the consensus_file and geoip_data_file
:param consensus_file: filename of a Tor consensus, see https://metrics.torproject.org/collector/recent/relay-descriptors/consensuses/
:param geoip_data_file: MaxMind mmdb filename, see https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
:param eps: control the density of the cluster on the map
"""
print('Reading consensus file')
ips = get_ip_from_consensus(consensus_file)
print(f'Found {len(ips)} relays')
points = list()
print('Geocoding IP addresses')
reader = geoip2.database.Reader(geoip_data_file)
for ip in ips:
points.append(geo_ip(ip, reader))
points = np.array(points)
points, vmax, vmin = cluster_coordinates(points, eps=eps)
fig = plt.figure(figsize=(10, 5))
gs = gridspec.GridSpec(2, 1, height_ratios=[1, 0.05], figure=fig)
ax = fig.add_subplot(gs[0], projection=ccrs.PlateCarree())
ax.stock_img()
ax.coastlines()
# TODO if you want to use OSM data with Mapbox, create an account and a custom style on Mapbox.
# Then, fill the credentials below, comment the ax.stock_img() and ax.coastlines() lines and
# uncomment the lines below
# see https://docs.mapbox.com/help/tutorials/create-a-custom-style/
# osm_tiles = MapboxStyleTiles(
# access_token='',
# map_id='',
# username='',
# cache=False)
# ax.add_image(osm_tiles, 4)
cmap = plt.cm.hot
norm = matplotlib.colors.LogNorm(vmin=vmin, vmax=vmax)
for pos, count in points:
ax.plot(pos[0], pos[1], 'o', markersize=max(4 * log(count, 10), 2), transform=ccrs.PlateCarree(),
color=cmap(norm(count)))
ax.set_global()
plt.box(False)
ax.set_extent([-170, 180, -60, 85], crs=ccrs.PlateCarree())
cb_ax = fig.add_subplot(gs[1])
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
cbar = plt.colorbar(sm, cax=cb_ax, orientation='horizontal')
cbar.set_label('Number of relays')
plt.tight_layout()
print('Saving map as map.png')
plt.savefig('map.png', dpi=300)
if __name__ == '__main__':
fire.Fire(main)